Path Planning

Objective: Develop path planning techniques for UAVs that can be implemented in real-time on simple computational hardware.

Principle Investigators: Randy Beard, Tim McLain

Sample Publication: Stephen Griffiths, Jeff Saunders, Andrew Curtis, Blake Barber, Tim McLain, Randy Beard, "Obstacle and Terrain Avoidance for Miniature Aerial Vehicles," Chapter 7 in *Advances in Unmanned Aerial Vehicles: State of the art and the road to autonomy*, edited by Kimon P. Valavanis, Springer Verlag, 2007.

Approach

Funding Source: AFOSR, AFRL/MN.

Developed path

planning

algorithms that use

both the Voronoi algorithm and the Rapidly Exploring Random Tree (RRT) algorithm.

Problem Summary

Given the current position of the UAV, a desired goal configuration, and a terrain map, plan a feasible path through the terrain.

Results

First successful flight test in 2005.

Successful flight through rural canyon in central Utah.

Successful flight through simulated urban terrain

R. Beard

Research Overview